Centroid - Based Document Classification : Analysis
نویسنده
چکیده
In recent years we have seen a tremendous growth in the volume of text documents available on the Internet, digital libraries, news sources, and company-wide intranets. Automatic text categorization, which is the task of assigning text documents to pre-specified classes (topics or themes) of documents, is an important task that can help both in organizing as well as in finding information on these huge resources. Text categorization presents unique challenges due to the large number of attributes present in the data set, large number of training samples, and attribute dependencies. In this paper we focus on a simple linear-time centroid-based document classification algorithm, that despite its simplicity and robust performance, has not been extensively studied and analyzed. Our extensive experiments show that this centroid-based classifier consistently and substantially outperforms other algorithms such as Naive Bayesian, k-nearest-neighbors, and C4.5, on a wide range of datasets. Our analysis shows that the similarity measure used by the centroid-based scheme allows it to classify a new document based on how closely its behavior matches the behavior of the documents belonging to different classes, as measured by the average similarity between the documents. This matching allows it to dynamically adjust for classes with different densities. Furthermore, our analysis shows that the similarity measure of the centroid-based scheme accounts for dependencies between the terms in the different classes. We believe that this feature is the reason why it consistently outperforms other classifiers that cannot take these dependencies into account.
منابع مشابه
Document Analysis And Classification Based On Passing Window
In this paper we present Document analysis and classification system to segment and classify contents of Arabic document images. This system includes preprocessing, document segmentation, feature extraction and document classification. A document image is enhanced in the preprocessing by removing noise, binarization, and detecting and correcting image skew. In document segmentation, an algorith...
متن کاملCentroid-Based Document Classification: Analysis and Experimental Results
In this paper we present a simple linear-time centroid-based document classification algorithm, that despite its simplicity and robust performance, has not been extensively studied and analyzed. Our experiments show that this centroid-based classifier consistently and substantially outperforms other algorithms such as Naive Bayesian, k-nearest-neighbors, and C4.5, on a wide range of datasets. O...
متن کاملEnhanced Centroid-Based Classification Technique by Filtering Outliers
Document clustering or unsupervised document classification has been used to enhance information retrieval. Recently this has become an intense area of research due to its practical importance. Outliers are the elements whose similarity to the centroid of the corresponding category is below some threshold value. In this paper, we show that excluding outliers from the noisy training data signifi...
متن کاملCentroid - Based Document Classification :
In recent years we have seen a tremendous growth in the volume of text documents available on the Internet, digital libraries, news sources, and company-wide intranets. Automatic text categorization, which is the task of assigning text documents to pre-specified classes (topics or themes) of documents, is an important task that can help both in organizing as well as in finding information on th...
متن کاملA Comparative Study of Centroid-Based and Naïve Bayes Classifiers for Document Categorization
Assigning documents to related categories is critical task which is used for effective document retrieval. Automatic text classification is the process of assigning new text document to the predefined categories based on its content. In this paper, we implemented and performed comparison of Naïve Bayes and Centroid-based algorithms for effective document categorization of English language text....
متن کامل